We study the notion of local treewidth in sparse random graphs: the maximum treewidth over all $k$-vertex subgraphs of an $n$-vertex graph. When $k$ is not too large, we give nearly tight bounds for this local treewidth parameter; we also derive tight bounds for the local treewidth of noisy trees, trees where every non-edge is added independently with small probability. We apply our upper bounds on the local treewidth to obtain fixed parameter tractable algorithms (on random graphs and noisy trees) for edge-removal problems centered around containing a contagious process evolving over a network. In these problems, our main parameter of study is $k$, the number of "infected" vertices in the network. For a certain range of parameters the running time of our algorithms on $n$-vertex graphs is $2^{o(k)}\textrm{poly}(n)$, improving upon the $2^{\Omega(k)}\textrm{poly}(n)$ performance of the best-known algorithms designed for worst-case instances of these edge deletion problems.
翻译:在稀有的随机图中,我们研究了本地树枝的概念:所有$$-verdex 子图上的最大树丝;当美元不那么大时,我们给本地树枝参数提供了近乎紧的界限;我们还为本地的树木树枝提供了紧的界限,其中每个非边缘树都是以很小的概率独立添加的。我们在本地树枝上应用了我们的上界限,以获得固定参数可移动的算法(在随机图和吵闹的树上),以覆盖一个网络上演变的传染过程的边缘迁移问题。在这些问题上,我们的主要研究参数是$k$,网络中“受感染”的脊椎的数量。对于某些参数,我们用美元-垂直图的算法运行时间是2 ⁇ o(k) ⁇ textrm{poly}(n),用$2 ⁇ mega(k) suterrm{poly} (n) 改进了为这些最坏的情况设计的最著名的平面算法的绩效。