Recently, artificial neural networks have been gaining momentum in the field of gravitational wave astronomy, for example in surrogate modelling of computationally expensive waveform models for binary black hole inspiral and merger. Surrogate modelling yields fast and accurate approximations of gravitational waves and neural networks have been used in the final step of interpolating the coefficients of the surrogate model for arbitrary waveforms outside the training sample. We investigate the existence of underlying structures in the empirical interpolation coefficients using autoencoders. We demonstrate that when the coefficient space is compressed to only two dimensions, a spiral structure appears, wherein the spiral angle is linearly related to the mass ratio. Based on this finding, we design a spiral module with learnable parameters, that is used as the first layer in a neural network, which learns to map the input space to the coefficients. The spiral module is evaluated on multiple neural network architectures and consistently achieves better speed-accuracy trade-off than baseline models. A thorough experimental study is conducted and the final result is a surrogate model which can evaluate millions of input parameters in a single forward pass in under 1ms on a desktop GPU, while the mismatch between the corresponding generated waveforms and the ground-truth waveforms is better than the compared baseline methods. We anticipate the existence of analogous underlying structures and corresponding computational gains also in the case of spinning black hole binaries.


翻译:最近,人造神经网络在引力波天文学领域的动力不断增强,例如,对二进制黑洞的螺旋和合并进行计算费用昂贵的波形模型的代用模型模拟,以进行计算昂贵的波形模型,用于二进制黑洞的螺旋和合并。根据这一发现,我们设计了一个螺旋模型,以可学习参数为基础,作为神经网络中的第一个层,用来测量在培训样本之外任意波形的代用代用代用模型系数的系数。我们调查了在使用自动变相器的实证内导内调系数中是否存在基本结构。我们调查了是否存在一些基础结构。我们进行了彻底的实验研究,最终结果显示,当系数空间压缩到两个维度时,一个螺旋螺旋形结构出现螺旋形结构,其螺旋角角角度角度与质量比率有线性关系。根据这一发现,我们设计了一个具有可学习参数的螺旋模型,作为神经网络中的第一个层,该结构学会绘制输入系数的输入空间的输入空间。螺旋模型在多个神经网络结构中进行了评价,并且实现更快速的加速-准确的交换。我们进行彻底的试实验研究,最后结果模型是在一个基基底的基底的基底的基数模型,在1进基底的基底的基数的基数结构中,在1进制的基数的基数的基数的基数结构中进行中,在比的基数的基数的基数结构中,在1进制的基数上,在1进制的基数上进行中进行。

0
下载
关闭预览

相关内容

图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2020年4月29日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员