The Lambert problem originated in orbital mechanics. It concerns with determining the initial velocity for a boundary value problem involving the dynamical constraint due to gravitational potential with additional time horizon and endpoint position constraints. Its solution has application in transferring a spacecraft from a given initial to a given terminal position within prescribed flight time via velocity control. We consider a probabilistic variant of the Lambert problem where the knowledge of the endpoint constraints in position vectors are replaced by the knowledge of their respective joint probability density functions. We show that the Lambert problem with endpoint joint probability density constraints is a generalized optimal mass transport (OMT) problem, thereby connecting this classical astrodynamics problem with a burgeoning area of research in modern stochastic control and stochastic machine learning. This newfound connection allows us to rigorously establish the existence and uniqueness of solution for the probabilistic Lambert problem. The same connection also helps to numerically solve the probabilistic Lambert problem via diffusion regularization, i.e., by leveraging further connection of the OMT with the Schr\"odinger bridge problem (SBP). This also shows that the probabilistic Lambert problem with additive dynamic process noise is a generalized SBP, and can be solved numerically using the so-called Schr\"odinger factors, as we do in this work. Our analysis leads to solving a system of reaction-diffusion PDEs where the gravitational potential appears as the reaction rate.
翻译:暂无翻译