We revisit the classic task of finding the shortest tour of $n$ points in $d$-dimensional Euclidean space, for any fixed constant $d \geq 2$. We determine the optimal dependence on $\varepsilon$ in the running time of an algorithm that computes a $(1+\varepsilon)$-approximate tour, under a plausible assumption. Specifically, we give an algorithm that runs in $2^{\mathcal{O}(1/\varepsilon^{d-1})} n\log n$ time. This improves the previously smallest dependence on $\varepsilon$ in the running time $(1/\varepsilon)^{\mathcal{O}(1/\varepsilon^{d-1})}n \log n$ of the algorithm by Rao and Smith~(STOC 1998). We also show that a $2^{o(1/\varepsilon^{d-1})}\text{poly}(n)$ algorithm would violate the Gap-Exponential Time Hypothesis (Gap-ETH). Our new algorithm builds upon the celebrated quadtree-based methods initially proposed by Arora (J. ACM 1998), but it adds a new idea that we call \emph{sparsity-sensitive patching}. On a high level this lets the granularity with which we simplify the tour depend on how sparse it is locally. We demonstrate that our technique extends to other problems, by showing that for Steiner Tree and Rectilinear Steiner Tree it yields the same running time. We complement our results with a matching Gap-ETH lower bound for Rectilinear Steiner Tree.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员