In signal processing, several applications involve the recovery of a function given noisy modulo samples. The setting considered in this paper is that the samples corrupted by an additive Gaussian noise are wrapped due to the modulo operation. Typical examples of this problem arise in phase unwrapping problems or in the context of self-reset analog to digital converters. We consider a fixed design setting where the modulo samples are given on a regular grid. Then, a three stage recovery strategy is proposed to recover the ground truth signal up to a global integer shift. The first stage denoises the modulo samples by using local polynomial estimators. In the second stage, an unwrapping algorithm is applied to the denoised modulo samples on the grid. Finally, a spline based quasi-interpolant operator is used to yield an estimate of the ground truth function up to a global integer shift. For a function in H\"older class, uniform error rates are given for recovery performance with high probability. This extends recent results obtained by Fanuel and Tyagi for Lipschitz smooth functions wherein $k$NN regression was used in the denoising step.


翻译:在信号处理过程中,多个应用程序涉及恢复给杂音模版样本提供的功能。 本文所考虑的设置是, 由添加器高斯噪音腐蚀的样品是因模版操作而包裹的。 这个问题的典型例子出现在未包装阶段或自重模拟到数字转换器中。 我们考虑一个固定的设计设置, 将模版样本放在一个常规网格上。 然后, 提出一个三阶段恢复战略, 以恢复地面真实信号, 直至全球整数转换。 第一阶段使用本地的多元估测器将模版样本密封起来。 在第二阶段, 对网格上脱黑的模版样本应用解包算法 。 最后, 使用一个以准中间线为基础的半中间操作器来估计地面真实函数, 直至全球整数变化。 对于H\" older 级的功能, 给出统一的错误率是极有可能的恢复性表现。 这扩展了Fanuel 和 Tyagi 最近在Lipschitz 平滑函数中取得的、 $k$NNNU 平面回归在进行脱缩时使用了。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
已删除
将门创投
3+阅读 · 2019年4月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
已删除
将门创投
3+阅读 · 2019年4月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员