A new approach to $L_2$-consistent estimation of a general density functional using $k$-nearest neighbor distances is proposed, where the functional under consideration is in the form of the expectation of some function $f$ of the densities at each point. The estimator is designed to be asymptotically unbiased, using the convergence of the normalized volume of a $k$-nearest neighbor ball to a Gamma distribution in the large-sample limit, and naturally involves the inverse Laplace transform of a scaled version of the function $f.$ Some instantiations of the proposed estimator recover existing $k$-nearest neighbor based estimators of Shannon and R\'enyi entropies and Kullback--Leibler and R\'enyi divergences, and discover new consistent estimators for many other functionals such as logarithmic entropies and divergences. The $L_2$-consistency of the proposed estimator is established for a broad class of densities for general functionals, and the convergence rate in mean squared error is established as a function of the sample size for smooth, bounded densities.
翻译:提议采用新的方法,使用美元-近邻距离,对一般密度功能进行以美元-近邻距离计算,以美元-近邻距离计算,对通用密度值进行新的估算,其中考虑的功能的形式是,对每个点密度某些函数的预期值为美元-最近距离值。估计器的设计是,利用一个美元-最近距离球的正常量与大比例范围内的伽玛分布的趋同值的趋同性,对一般功能性差数的大致密度确定一定的基数,对一般功能差数的测算值确定为以美元-2美元/美元/美元计算的测算器,对一般功能差数的大致密度确定为以美元-最远距离的测算器,Kullback-Leback-Lebel和R'enyi差数的测算器,对许多其他功能的测算器进行一致的测算。 拟议的测算器的逆差值为以美元-2美元-美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元