In this paper we analyze a fully discrete scheme for a general Cahn-Hilliard equation coupled with a nonsteady Magneto-hydrodynamics flow, which describes two immiscible, incompressible and electrically conducting fluids with different mobilities, fluid viscosities and magnetic diffusivities. A typical fully discrete scheme, which is comprised of conforming finite element method and the Euler semi-implicit discretization based on a convex splitting of the energy of the equation is considered in detail. We prove that our scheme is unconditionally energy stability and obtain some optimal error estimates for the concentration field, the chemical potential, the velocity field, the magnetic field and the pressure. The results of numerical tests are presented to validate the rates of convergence.
翻译:在本文中,我们分析了一个完全独立的普通Cahn-Hilliard方程式计划,加上一种非稳定的磁磁流动力流,它描述了两种不过分的、不压缩的和电动的流体,这些流体具有不同的调动、流体粘度和磁异性。一个典型的完全独立的方程式计划,它由符合的有限元素法和基于该方程式能量的分流的电流分解的Euler半分离法组成。我们证明我们的计划是无条件的能源稳定,并获得对集中场、化学潜力、速度场、磁场和压力的一些最佳误差估计。提供了数字测试的结果,以验证聚合率。