Missing data is frequently encountered in practice. Propensity score estimation is a popular tool for handling such missingness. The propensity score is often developed using a model for the response probability, which can be subject to model misspecification. In this paper, we consider an alternative approach of estimating the inverse of the propensity scores using the density ratio function. The smoothed density ratio function is obtained by the solution to the information projection onto the space satisfying the moment conditions on the balancing scores. By including the covariates for the outcome regression models only into the density ratio model, we can achieve efficient propensity score estimation. Penalized regression is used to identify important covariates. We further extend the proposed approach to the multivariate missing case. Some limited simulation studies are presented to compare with the existing methods.
翻译:缺少的数据在实践中经常遇到。 Probensity 评分估计是处理这种缺失的流行工具。 偏差评分通常使用反应概率模型来制定, 可能会有模型的偏差。 在本文中, 我们考虑另一种办法, 利用密度比率函数来估计偏差评分的反向值。 平滑的密度比率函数是通过对信息投影的解决方案获得的, 该信息投影符合平衡评分的时空条件。 通过将结果回归模型的共变量只纳入密度比率模型, 我们就可以实现高效的偏差评估计。 使用惩罚性回归法来确定重要的共差值。 我们进一步将拟议的方法扩大到多变量缺失的个案。 一些有限的模拟研究被提出来与现有方法进行比较。