We propose a covariance stationarity test for an otherwise dependent and possibly globally non-stationary time series. We work in the new setting of Jin, Wang and Wang (2015) who exploit Walsh (1923) functions (global square waves) in order to compare sub-sample covariances with the full sample counterpart. They impose strict stationarity under the null, only consider linear processes under either hypothesis, and exploit linearity in order to achieve a parametric estimator for an inverted high dimensional asymptotic covariance matrix. Conversely, we allow for linear or linear processes with possibly non-iid innovations. This is important in macroeconomics and finance where nonlinear feedback and random volatility occur in many settings. We completely sidestep asymptotic covariance matrix estimation and inversion by bootstrapping a max-correlation difference statistic, where the maximum is taken over the correlation lag h and Walsh function generated sub-sample counter k (the number of systematic samples). We achieve a higher feasible rate of increase for the maximum lag and counter H and K, and in the supplemental material we present a data driven method for selecting H and K. Of particular note, our test is capable of detecting breaks in variance, and distant, or very mild, deviations from stationarity.
翻译:我们建议对一个其他依赖性和可能全球上非静止的时间序列进行常态常态测试。我们是在金、王和王新环境下工作的,他们利用沃尔什(1923年)的功能(全球平方波),在新的环境里工作,把次抽样(1923年)的常态常态同异)与整个抽样对应方进行比较。他们把严格的常态在无效状态下实施,只在假设中考虑线性进程,并利用线性,以便为一个高垂直的高度无症状共变矩阵(系统样本的数量)建立一个参数性测算器。相反,我们允许线性或线性进程,可能进行非二项创新。这在宏观经济和金融中很重要,因为许多情况下会出现非线性反馈和随机波动。我们完全避免零态共变矩阵的估算和变换,办法是采用最大曲线差异的统计方法,在相关差差 h 和 沃尔什 功能产生次抽样 k (系统样本的数量 ) 。我们为最大滞后和反H和K,在补充材料中实现更高的可行增速率率。我们展示一种数据驱动的偏差方法,在选择H和K的远偏差中,我们能够测测测测测得的甚差。