In this paper we derive a Large Deviation Principle (LDP) for inhomogeneous U/V-statistics of a general order. Using this, we derive a LDP for two types of statistics: random multilinear forms, and number of monochromatic copies of a subgraph. We show that the corresponding rate functions in these cases can be expressed as a variational problem over a suitable space of functions. We use the tools developed to study Gibbs measures with the corresponding Hamiltonians, which include tensor generalizations of both Ising (with non-compact base measure) and Potts models. For these Gibbs measures, we establish scaling limits of log normalizing constants, and weak laws in terms of weak* topology, which are of possible independent interest.
翻译:在本文中,我们得出了一个大偏离原则(LDP),用于一个总顺序的不相容的U/V-统计学。使用这个原则,我们得出一个LDP,用于两种类型的统计:随机多线表和单色体复制件的数量。我们显示,这些情况下的相应比率函数可以表现为功能空间的变异问题。我们使用开发的工具,研究Gibbs措施与相应的汉密尔顿人措施,其中包括Ising(采用非对应基准计量)和Potts模式的分级概括。我们为这些Gibbs措施规定了日志常数的缩放限制,以及薄弱的表层法,这些都可能具有独立的兴趣。