We develop a data-driven optimal shrinkage algorithm for matrix denoising in the presence of high-dimensional noise with separable covariance structure; that is, the nose is colored and dependent. The algorithm, coined extended OptShrink (eOptShrink), involves a new imputation and rank estimation and we do not need to estimate the separable covariance structure of the noise. On the theoretical side, we study the asymptotic behavior of singular values and singular vectors of the random matrix associated with the noisy data, including the sticking property of non-outlier singular values and delocalization of the non-outlier singular vectors with a convergence rate. We apply these results to establish the guarantee of the imputation, rank estimation and eOptShrink algorithm with a convergence rate. On the application side, in addition to a series of numerical simulations with a comparison with various state-of-the-art optimal shrinkage algorithms, we apply eOptShrink to extract fetal electrocardiogram from the single channel trans-abdominal maternal electrocardiogram.
翻译:我们开发了一种数据驱动的最佳缩算法,用于在高维噪音和可分离的共变结构下拆卸矩阵;即鼻子是色化和依赖性的。算法,即硬化的扩展OptShrink(eOptShrink),涉及一个新的估算和等级估计,我们不需要估计噪音的分离共变结构。在理论方面,我们研究与噪音数据相关的随机矩阵的单值和单矢量的无症状行为,包括非外部单值的坚固属性和非外部单向单向矢量的异位化。我们应用这些结果来保证估算、定级估计和eOptSrink算法与趋同率的保证。在应用方面,除了一系列数字模拟,与各种最先进的收缩算法进行比较外,我们还应用eOptShrink来从单一通道的跨腹腔电动成像中提取金属电卡片。