Expander decompositions have become one of the central frameworks in the design of fast algorithms. For an undirected graph $G=(V,E)$, a near-optimal $\phi$-expander decomposition is a partition $V_1, V_2, \ldots, V_k$ of the vertex set $V$ where each subgraph $G[V_i]$ is a $\phi$-expander, and only an $\widetilde{O}(\phi)$-fraction of the edges cross between partition sets. In this article, we give the first near-optimal \emph{parallel} algorithm to compute $\phi$-expander decompositions in near-linear work $\widetilde{O}(m/\phi^2)$ and near-constant span $\widetilde{O}(1/\phi^4)$. Our algorithm is very simple and likely practical. Our algorithm can also be implemented in the distributed Congest model in $\tilde{O}(1/\phi^4)$ rounds. Our results surpass the theoretical guarantees of the current state-of-the-art parallel algorithms [Chang-Saranurak PODC'19, Chang-Saranurak FOCS'20], while being the first to ensure that only an $\tilde{O}(\phi)$ fraction of edges cross between partition sets. In contrast, previous algorithms [Chang-Saranurak PODC'19, Chang-Saranurak FOCS'20] admit at least an $O(\phi^{1/3})$ fraction of crossing edges, a polynomial loss in quality inherent to their random-walk-based techniques. Our algorithm, instead, leverages flow-based techniques and extends the popular sequential algorithm presented in [Saranurak-Wang SODA'19].


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员