Few-shot image generation is a challenging task since it aims to generate diverse new images for an unseen category with only a few images. Existing methods suffer from the trade-off between the quality and diversity of generated images. To tackle this problem, we propose Hyperbolic Attribute Editing (HAE), a simple yet effective method. Unlike other methods that work in Euclidean space, HAE captures the hierarchy among images using data from seen categories in hyperbolic space. Given a well-trained HAE, images of unseen categories can be generated by moving the latent code of a given image toward any meaningful directions in the Poincar\'e disk with a fixing radius. Most importantly, the hyperbolic space allows us to control the semantic diversity of the generated images by setting different radii in the disk. Extensive experiments and visualizations demonstrate that HAE is capable of not only generating images with promising quality and diversity using limited data but achieving a highly controllable and interpretable editing process.
翻译:少量图像生成是一项具有挑战性的任务, 因为它旨在为一个仅包含少量图像的不可见类别生成不同的新图像。 现有方法存在在生成图像质量和多样性之间的权衡问题。 为了解决这一问题, 我们提议了一种简单而有效的方法, 即双曲属性编辑( HEAE ) 。 与在 Euclidean 空间工作的其他方法不同, HAE 利用在双曲空间的可见类别中的数据来捕捉图像的等级。 由于受过良好培训的 HAE, 将一个特定图像的潜在代码移动到一个固定半径的 Poincar\'e 磁盘中的任何有意义的方向, 可以生成不可见图像类别。 最重要的是, 双曲空间使我们能够控制生成图像的语义多样性, 在磁盘中设置不同的射线。 广泛的实验和视觉化表明, HAE 不仅能够使用有限的数据生成质量和多样性有希望的图像, 而且能够实现高度控制和可解释的编辑过程。