We study the supervised learning paradigm called Learning Using Privileged Information, first suggested by Vapnik and Vashist (2009). In this paradigm, in addition to the examples and labels, additional (privileged) information is provided only for training examples. The goal is to use this information to improve the classification accuracy of the resulting classifier, where this classifier can only use the non-privileged information of new example instances to predict their label. We study the theory of privileged learning with the zero-one loss under the natural Privileged ERM algorithm proposed in Pechyony and Vapnik (2010a). We provide a counter example to a claim made in that work regarding the VC dimension of the loss class induced by this problem; We conclude that the claim is incorrect. We then provide a correct VC dimension analysis which gives both lower and upper bounds on the capacity of the Privileged ERM loss class. We further show, via a generalization analysis, that worst-case guarantees for Privileged ERM cannot improve over standard non-privileged ERM, unless the capacity of the privileged information is similar or smaller to that of the non-privileged information. This result points to an important limitation of the Privileged ERM approach. In our closing discussion, we suggest another way in which Privileged ERM might still be helpful, even when the capacity of the privileged information is large.
翻译:我们首先研究了Vapnik 和 Vashist (2009年)首次建议的 " 利用特权信息学习 " 监督的学习范式。在这一范式中,除了实例和标签之外,我们还提供了额外(优先)信息,仅用于培训范例。目标是利用这些信息提高由此产生的分类者的分类准确性,使该分类者只能使用新例中非优先信息来预测其标签。我们研究了在Pechyony 和 Vapnik (2010年a) 中提议的自然特权机构风险管理算法下的零一损失的特惠学习理论。我们提供了一个反例,说明除了在这一问题引起的损失类别VC方面开展的工作中所提出的主张;我们的结论是,这一主张是不正确的。我们随后提供了正确的VC维度分析,对优先机构风险管理损失类别的能力进行了下层和上层分析。我们通过一般性分析进一步表明,最差的情况性机构风险管理保证不能超越标准的非特权机构风险管理(2010年),除非特权信息的能力类似于或更小于我们没有优势的机构风险管理办法的大规模讨论结果。</s>