Many joint entity relation extraction models setup two separated label spaces for the two sub-tasks (i.e., entity detection and relation classification). We argue that this setting may hinder the information interaction between entities and relations. In this work, we propose to eliminate the different treatment on the two sub-tasks' label spaces. The input of our model is a table containing all word pairs from a sentence. Entities and relations are represented by squares and rectangles in the table. We apply a unified classifier to predict each cell's label, which unifies the learning of two sub-tasks. For testing, an effective (yet fast) approximate decoder is proposed for finding squares and rectangles from tables. Experiments on three benchmarks (ACE04, ACE05, SciERC) show that, using only half the number of parameters, our model achieves competitive accuracy with the best extractor, and is faster.
翻译:许多联合实体关系提取模型为两个子任务(即实体检测和关系分类)设置了两个分开的标签空间。 我们争辩说, 这一设置可能会阻碍实体和关系之间的信息互动。 在这项工作中, 我们提议取消对两个子任务标签空间的不同处理方法。 我们模型的输入是一个表格, 包含一个句子中的所有单词配对。 实体和关系在表格中由方形和矩形代表。 我们用一个统一的分类器来预测每个单元格的标签, 它将两个子任务的知识统一起来。 为了测试, 提出了一个有效的( 快速的) 近似解码, 用于查找表格中的方形和矩形 。 三个基准( ACE04、 ACE05、 SciERC) 的实验显示, 仅使用参数的一半参数, 我们的模型就能以最佳提取器实现竞争性精度, 而且速度更快 。