In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.


翻译:在联合实体和关系提取中,现有工作要么按顺序编码任务的具体特点,导致任务之间特征互动的不平衡,而后来提取的特征与先到的特征没有直接接触。或者以平行的方式编码实体特征和关系特征,这意味着每项任务的特征代表学习基本上相互独立,但投入共享除外。我们提议建立一个分割过滤网络,以适当模式在任务之间进行双向互动,特征编码分解成两个步骤:分割和过滤。在我们的编码中,我们利用两个大门:实体和关联门,将神经元分成两个任务分区,一个共享分区。共同分区代表了对两个任务都有价值的任务和关系信息,并且均衡地分享了两个任务,以确保适当的双向互动。任务分配是内部信息,通过两个任务之间的一致努力形成,确保具体任务特征的编码取决于其他两个步骤:分解和过滤。在六个公共数据集上的实验结果显示,我们的模式比以往的方法要好得多。此外,我们进行的辅助实验表明,与以前的工作不同,我们之间的关系预测是两个任务之间有价值的信息,对于确保适当的双向互动互动。任务之间的预测可以用于一个名为http/coper/com在非源代码中找到。

0
下载
关闭预览

相关内容

【ECCV2020】OCRNet化解语义分割上下文信息缺失难题
专知会员服务
16+阅读 · 2020年8月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年4月25日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Arxiv
7+阅读 · 2018年8月28日
VIP会员
相关VIP内容
【ECCV2020】OCRNet化解语义分割上下文信息缺失难题
专知会员服务
16+阅读 · 2020年8月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年4月25日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Top
微信扫码咨询专知VIP会员