This work studies the linear approximation of high-dimensional dynamical systems using low-rank dynamic mode decomposition (DMD). Searching this approximation in a data-driven approach is formalised as attempting to solve a low-rank constrained optimisation problem. This problem is non-convex and state-of-the-art algorithms are all sub-optimal. This paper shows that there exists a closed-form solution, which is computed in polynomial time, and characterises the l2-norm of the optimal approximation error. The paper also proposes low-complexity algorithms building reduced models from this optimal solution, based on singular value decomposition or eigen value decomposition. The algorithms are evaluated by numerical simulations using synthetic and physical data benchmarks.
翻译:这项工作研究使用低位动态模式分解( DMD) 的高维动态系统的直线近似值。 以数据驱动的方法搜索这一近似值, 被正规化为试图解决低级限制优化问题。 这个问题是非cavex, 最先进的算法都是次最佳的。 本文显示, 存在一种闭式的解决方案, 以多元时间计算, 并且将最佳近似误差的l2- 诺姆定性为特征 。 本文还提议, 低兼容性算法根据单值分解法或eigen 值分解法, 从这一最佳解决方案中构建减低的模型。 算法是通过使用合成和物理数据基准进行数字模拟来评估的。