Automatic speech recognition (ASR) of single channel far-field recordings with an unknown number of speakers is traditionally tackled by cascaded modules. Recent research shows that end-to-end (E2E) multi-speaker ASR models can achieve superior recognition accuracy compared to modular systems. However, these models do not ensure real-time applicability due to their dependency on full audio context. This work takes real-time applicability as the first priority in model design and addresses a few challenges in previous work on multi-speaker recurrent neural network transducer (MS-RNN-T). First, we introduce on-the-fly overlapping speech simulation during training, yielding 14% relative word error rate (WER) improvement on LibriSpeechMix test set. Second, we propose a novel multi-turn RNN-T (MT-RNN-T) model with an overlap-based target arrangement strategy that generalizes to an arbitrary number of speakers without changes in the model architecture. We investigate the impact of the maximum number of speakers seen during training on MT-RNN-T performance on LibriCSS test set, and report 28% relative WER improvement over the two-speaker MS-RNN-T. Third, we experiment with a rich transcription strategy for joint recognition and segmentation of multi-party speech. Through an in-depth analysis, we discuss potential pitfalls of the proposed system as well as promising future research directions.


翻译:近来的研究显示,与模块系统相比,端到端(E2E)多发式ASR模型可以实现较高的识别准确度;然而,这些模型并不能确保实时适用性,因为其依赖全音频环境。这项工作将实时适用性作为模式设计的第一优先事项,并解决以往多声频经常性神经网络传输器(MS-RNNN-T)工作面临的一些挑战。首先,我们在培训期间采用空对空重叠语音模拟,在LibriSpeechMix测试集上产生14%相对字差错率(WER)的改进。第二,我们提议采用新的多音频-T(MT-RNNN-T)模型,并采用基于重叠的目标安排战略,在模式结构没有变化的情况下,将任意的发言人人数概括化。 我们调查了在培训中看到的最大人数对MT-RNNT-T在LibriCSS测试集中的表现产生的影响,在LibriSpe-RIS测试集中产生14%的相对字差差差差率的改进率。我们建议,将MNNERER 将M-S-S-reports-reports-travelation-regles-reglation (我们讨论) 的富有的双轨)联合研究-real-regal-real-real-regal-real-real-real-de ex-regal 分析,作为M-tramentaltramental-real-real-real-real-de-regildalmentaldal-real-de-de-real-de ex-real-de-real-real-de ex-de ex-real-tramental-refal-real-real-real-de-real-regal-real-real-real-real-real-regal-de-de-de-real-real-real-de-real-S-real-real-real-real-real-real-S-S-S-S-S-S-S-S-real-S-S-de ex。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员