The classical Langevin Monte Carlo method looks for samples from a target distribution by descending the samples along the gradient of the target distribution. The method enjoys a fast convergence rate. However, the numerical cost is sometimes high because each iteration requires the computation of a gradient. One approach to eliminate the gradient computation is to employ the concept of ``ensemble." A large number of particles are evolved together so the neighboring particles provide gradient information to each other. In this article, we discuss two algorithms that integrate the ensemble feature into LMC and the associated properties. In particular, we find that if one directly surrogates the gradient using the ensemble approximation, the algorithm, termed Ensemble Langevin Monte Carlo, is unstable due to a high variance term. If the gradients are replaced by the ensemble approximations only in a constrained manner, to protect from the unstable points, the algorithm, termed Constrained Ensemble Langevin Monte Carlo, resembles the classical LMC up to an ensemble error but removes most of the gradient computation.


翻译:古典的 Langevin Monte Carlo 方法通过在目标分布梯度上降低样本,寻找目标分布的样本。 方法具有快速趋同率。 但是, 数字成本有时很高, 因为每次迭代都需要计算梯度。 消除梯度计算的方法之一是使用“ 共性” 的概念。 大量的粒子一起演进, 以便相邻的粒子能够相互提供梯度信息。 在文章中, 我们讨论两种将共性特性纳入 LMC 和相关属性的算法。 特别是, 我们发现, 如果使用共性近似直接代代代梯度, 算法, 称为 Ensemble Langevin Monte Carlo 的算法, 则由于一个很大的变差期而不稳定。 如果梯度被共性近似值所取代, 则只能以受约束的方式保护不不稳定的点, 算法, 被称为 Constraced Ensemble Langevin Monte Carlo, 类似于经典的LMC, 和 共性 Lamble 差 差 差差 差 差,, 差 差 差,,, 但是 多数 解 。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员