The classical Langevin Monte Carlo method looks for samples from a target distribution by descending the samples along the gradient of the target distribution. The method enjoys a fast convergence rate. However, the numerical cost is sometimes high because each iteration requires the computation of a gradient. One approach to eliminate the gradient computation is to employ the concept of ``ensemble." A large number of particles are evolved together so the neighboring particles provide gradient information to each other. In this article, we discuss two algorithms that integrate the ensemble feature into LMC and the associated properties. In particular, we find that if one directly surrogates the gradient using the ensemble approximation, the algorithm, termed Ensemble Langevin Monte Carlo, is unstable due to a high variance term. If the gradients are replaced by the ensemble approximations only in a constrained manner, to protect from the unstable points, the algorithm, termed Constrained Ensemble Langevin Monte Carlo, resembles the classical LMC up to an ensemble error but removes most of the gradient computation.
翻译:古典的 Langevin Monte Carlo 方法通过在目标分布梯度上降低样本,寻找目标分布的样本。 方法具有快速趋同率。 但是, 数字成本有时很高, 因为每次迭代都需要计算梯度。 消除梯度计算的方法之一是使用“ 共性” 的概念。 大量的粒子一起演进, 以便相邻的粒子能够相互提供梯度信息。 在文章中, 我们讨论两种将共性特性纳入 LMC 和相关属性的算法。 特别是, 我们发现, 如果使用共性近似直接代代代梯度, 算法, 称为 Ensemble Langevin Monte Carlo 的算法, 则由于一个很大的变差期而不稳定。 如果梯度被共性近似值所取代, 则只能以受约束的方式保护不不稳定的点, 算法, 被称为 Constraced Ensemble Langevin Monte Carlo, 类似于经典的LMC, 和 共性 Lamble 差 差 差差 差 差,, 差 差 差,,, 但是 多数 解 。