We analyze Kumar's recent quadratic algebraic branching program size lower bound proof method (CCC 2017) for the power sum polynomial. We present a refinement of this method that gives better bounds in some cases. The lower bound relies on Noether-Lefschetz type conditions on the hypersurface defined by the homogeneous polynomial. In the explicit example that we provide, the lower bound is proved resorting to classical intersection theory. Furthermore, we use similar methods to improve the known lower bound methods for slice rank of polynomials. We consider a sequence of polynomials that have been studied before by Shioda and show that for these polynomials the improved lower bound matches the known upper bound.


翻译:我们分析了 Kumar 最近的四边代数分解程序对功率和多元度的低约束度验证方法( CCC 2017) 的大小。 我们展示了该方法的改进, 在某些情况中提供了更好的界限。 较低约束依赖于由同质多元度定义的超表层上的Noether- Lefschetz 类型条件 。 在我们提供的明显例子中, 较低约束被证明采用了经典交叉理论 。 此外, 我们使用类似方法来改进已知的多元度级切片的较低约束方法 。 我们考虑了 Shioda 之前研究过的多元度序列, 并显示对这些多元度中, 改进后的下约束与已知的上约束相匹配 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员