We study the paradigmatic spiked matrix model of principal components analysis, where the rank-one signal is corrupted by additive noise. While the noise is typically taken from a Wigner matrix with independent entries, here the potential acting on the eigenvalues has a quadratic plus a quartic component. The quartic term induces strong correlations between the matrix elements, which makes the setting relevant for applications but analytically challenging. Our work provides the first characterization of the Bayes-optimal limits for inference in this model with structured noise. If the signal prior is rotational-invariant, then we show that a spectral estimator is optimal. In contrast, for more general priors, the existing approximate message passing algorithm (AMP) falls short of achieving the information-theoretic limits, and we provide a justification for this sub-optimality. Finally, by generalizing the theory of Thouless-Anderson-Palmer equations, we cure the issue by proposing a novel AMP which matches the theoretical limits. Our information-theoretic analysis is based on the replica method, a powerful heuristic from statistical mechanics; instead, the novel AMP comes with a rigorous state evolution analysis tracking its performance in the high-dimensional limit. Even if we focus on a specific noise distribution, our methodology can be generalized to a wide class of trace ensembles, at the cost of more involved expressions.
翻译:我们研究主要组成部分分析的范式激增矩阵模型, 使一级信号因添加噪音而腐蚀。 虽然噪音通常取自带有独立条目的维格矩阵, 但在此, egenvalue 上的潜在动作具有二次和二次的成分。 夸度术语在矩阵元素之间产生强烈的关联, 这使得该设置与应用相关, 但在分析上具有挑战性。 我们的工作为这个模型中的推论提供了初步的Bayes- 最佳限度定性。 如果先前的信号是旋转变异性, 那么我们就会显示光谱估计器是最佳的。 相比之下, 相对于更一般的前科, 现有的近似电算算法( AMP) 没有达到信息- 理论限制, 我们为这种次优化提供了理由。 最后, 我们通过概括无名- 人- Palmer 方方方程的理论, 我们通过提出符合理论限制的新型 AMP 。 我们的信息- 度分析基于复制性的成本分析方法, 一种更强的级级级级分析方法, 我们的级级级级级分析是高级的超度分析 。 一个动态分析, 我们的级分析的级分析的级分析, 一个高级的级的级的级分析, 一个动态分析, 一个动态分析, 一个动态的级的级的级分析, 一个动态的级分析, 一个动态分析, 一个高级的级的系统, 一个动态的级的级分析, 一个动态的系统。