Numerous blockchain applications are designed with tasks that naturally have finite durations, and hence, a double-spending attack (DSA) on such blockchain applications leans towards being conducted within a finite timeframe, specifically before the completion of their tasks. Furthermore, existing research suggests that practical attackers typically favor executing a DSA within a finite timeframe due to their limited computational resources. These observations serve as the impetus for this paper to investigate a time-restricted DSA (TR-DSA) model on Proof-of-Work based blockchains. In this TR-DSA model, an attacker only mines its branch within a finite timeframe, and the TR-DSA is considered unsuccessful if the attacker's branch fails to surpass the honest miners' branch when the honest miners' branch has grown by a specific number of blocks. First, we developed a general closed-form expression for the success probability of a TR-DSA. This developed probability not only can assist in evaluating the risk of a DSA on blockchain applications with timely tasks, but also can enable practical attackers with limited computational resources to assess the feasibility and expected reward of launching a TR-DSA. In addition, we provide rigorous proof that the success probability of a TR-DSA is no greater than that of a time-unrestricted DSA where the attacker indefinitely mines its branch. This result implies that blockchain applications with timely tasks are less vulnerable to DSAs than blockchain applications that provide attackers with an unlimited timeframe for their attacks. Furthermore, we show that the success probability of a TR-DSA is always smaller than one even though the attacker controls more than half of the hash rate in the network. This result alerts attackers that there is still a risk of failure in launching a TR-DSA even if they amass a majority of the hash rate in the network.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员