Few-Shot Learning (FSL) requires vision models to quickly adapt to brand-new classification tasks with a shift in task distribution. Understanding the difficulties posed by this task distribution shift is central to FSL. In this paper, we show that a simple channel-wise feature transformation may be the key to unraveling this secret from a channel perspective. When facing novel few-shot tasks in the test-time datasets, this transformation can greatly improve the generalization ability of learned image representations, while being agnostic to the choice of training algorithms and datasets. Through an in-depth analysis of this transformation, we find that the difficulty of representation transfer in FSL stems from the severe channel bias problem of image representations: channels may have different importance in different tasks, while convolutional neural networks are likely to be insensitive, or respond incorrectly to such a shift. This points out a core problem of the generalization ability of modern vision systems and needs further attention in the future.
翻译:很少热学习( FSL) 需要愿景模型来快速适应任务分布变化带来的品牌新分类任务。 了解任务分配转移带来的困难是FSL的核心。 在本文中, 我们显示简单的频道特性转换可能是从频道角度解开这一秘密的关键。 当在测试时间数据集中面临新颖的微小任务时, 这种转变可以极大地提高学习的图像表现的普及能力, 同时对培训算法和数据集的选择具有不可知性。 通过对这一转变进行深入分析, 我们发现, FSL 代表性转移的难度来自图像表达的严重的频道偏差问题: 频道在不同的任务中可能具有不同的重要性, 而动态神经网络可能并不敏感, 或者对这样的转变反应不正确。 这指出了现代视觉系统一般化能力的核心问题, 并且需要在未来进一步关注 。