Lane graph estimation is an essential and highly challenging task in automated driving and HD map learning. Existing methods using either onboard or aerial imagery struggle with complex lane topologies, out-of-distribution scenarios, or significant occlusions in the image space. Moreover, merging overlapping lane graphs to obtain consistent large-scale graphs remains difficult. To overcome these challenges, we propose a novel bottom-up approach to lane graph estimation from aerial imagery that aggregates multiple overlapping graphs into a single consistent graph. Due to its modular design, our method allows us to address two complementary tasks: predicting ego-respective successor lane graphs from arbitrary vehicle positions using a graph neural network and aggregating these predictions into a consistent global lane graph. Extensive experiments on a large-scale lane graph dataset demonstrate that our approach yields highly accurate lane graphs, even in regions with severe occlusions. The presented approach to graph aggregation proves to eliminate inconsistent predictions while increasing the overall graph quality. We make our large-scale urban lane graph dataset and code publicly available at http://urbanlanegraph.cs.uni-freiburg.de.
翻译:车道图估计是自动驾驶和高清地图学习中至关重要的且极具挑战性的任务。现有方法使用车载或航拍图片处理复杂的车道拓扑结构、分布不均的场景或图像空间中严重遮挡的问题。此外,合并重叠的车道图以获得一致的大规模车道图仍然很困难。为了克服这些挑战,我们提出了一种新的自下而上的车道图估计方法,该方法通过聚合多个重叠的车道图到单个一致的车道图来解决问题。由于其模块化设计,我们的方法可以解决两个互补的任务:使用图神经网络从任意车辆位置预测自我后继车道图并聚合这些预测成一致的全局车道图。在大规模车道图数据集上进行的广泛实验表明,我们的方法即使在严重遮挡的区域也能产生高度精确的车道图。图聚合方法不仅可以消除不一致的预测结果,同时提高整体车道图的质量。我们通过网址http://urbanlanegraph.cs.uni-freiburg.de公开了我们的大规模城市车道图数据集和代码。