Over-the-air computation (AirComp) leveraging the superposition property of wireless multiple-access channel (MAC), is a promising technique for effective data collection and computation of large-scale wireless sensor measurements in Internet of Things applications. Most existing work on AirComp only considered computation of spatial-and-temporal independent sensor signals, though in practice different sensor measurement signals are usually correlated. In this letter, we propose an AirComp system with spatial-and-temporal correlated sensor signals, and formulate the optimal AirComp policy design problem for achieving the minimum computation mean-squared error (MSE). We develop the optimal AirComp policy with the minimum computation MSE in each time step by utilizing the current and the previously received signals. We also propose and optimize a low-complexity AirComp policy in closed form with the performance approaching to the optimal policy.
翻译:利用无线多接入频道(MAC)的叠加性能进行空中计算(AirComp),是有效收集数据和计算互联网用户应用中大规模无线传感器测量结果的一个很有希望的技术,关于AirComp的大多数现有工作只考虑计算空间和时空独立传感器信号,尽管在实践中,不同的传感器测量信号通常是相互关联的。我们在信中提议建立一个带有空间和时空相关传感器信号的气Comp系统,并制定最佳的空Comp政策设计问题,以达到最小的计算平均差错(MSE)。我们利用当前和以前收到的信号,在每一个步骤中制定最低计算 MSE 的最佳空Comp政策。我们还提议并优化封闭式的低兼容性空Comp航空政策,其性能接近于最佳政策。