This paper analyzes the classical linear regression model with measurement errors in all the variables. First, we provide necessary and sufficient conditions for identification of the coefficients. We show that the coefficients are not identified if and only if an independent normally distributed linear combination of regressors can be transferred from the regressors to the errors. Second, we introduce a new estimator for the coefficients using a continuum of moments that are based on second derivatives of the log characteristic function of the observables. In Monte Carlo simulations, the estimator performs well and is robust to the amount of measurement error and number of mismeasured regressors. In an application to firm investment decisions, the estimates are similar to those produced by a generalized method of moments estimator based on third to fifth moments.
翻译:本文分析了古典线性回归模型, 并分析了所有变量的测量错误。 首先, 我们为确定系数提供了必要和充分的条件。 我们显示, 只有当一个独立、 通常分布的递减者线性组合从递减者转到错误时, 系数才会被确定。 其次, 我们引入一个新的系数估计符, 使用基于可观测值日志特征函数的第二个衍生物的连续时间。 在蒙特卡洛模拟中, 估计符运行良好, 且与测量错误和误测递减者的数量相当强。 在对公司投资决策的应用中, 估计值与基于第三至第五个时刻的时空测算普遍方法所得出的数值相似 。