We consider determining the $\R$-minimizing solution of ill-posed problem $A x = y$ for a bounded linear operator $A: X \to Y$ from a Banach space $X$ to a Hilbert space $Y$, where $\R: X \to (-\infty, \infty]$ is a strongly convex function. A dual gradient flow is proposed to approximate the sought solution by using noisy data. Due to the ill-posedness of the underlying problem, the flow demonstrates the semi-convergence phenomenon and a stopping time should be chosen carefully to find reasonable approximate solutions. We consider the choice of a proper stopping time by various rules such as the {\it a priori} rules, the discrepancy principle, and the heuristic discrepancy principle and establish the respective convergence results. Furthermore, convergence rates are derived under the variational source conditions on the sought solution. Numerical results are reported to test the performance of the dual gradient flow.


翻译:我们考虑确定一个捆绑线性操作员用美元Ax= y美元来最小化问题 $A x = y美元 美元 : X = 至 Y 美元 从Banach空间 美元到 Hilbert 空间 $Y美元, 美元: X = 美元 = 美元 = 美元 = 美元 = 美元 = 美元 ; 美元 : 美元 : X = 美元 = y = 美元 = 美元 ; 美元 = 美元 = 美元 ; 美元 : 美元 = 美元 : X = = 美元 = 美元 = 美元 ; 美元 美元 = = 美元 = 美元 = ; 美元 美元 = = 美元 = = 美元 ; 美元 ( = = 美元, = 美元 = 美元 = 美元 美元 ; 美元 = 美元 = 美元 美元 = = 美元 美元 美元 美元 ; = 美元 美元 = 美元 美元 美元 = = = 美元 = = 美元 美元 = 美元 美元 = 美元 美元 美元 ; = = = 美元 美元 ; 美元 美元 = 美元 = = = = = = 美元 美元 美元 ; 美元 美元 美元 ; ; = ; 美元 = = 美元 美元 美元 = = = = y = = y y = 美元 = = = y = = = = = = = = = = = = = = = = = = = 美元 y = = = = = = = y y y y y = y y y = = y y = = 美元 y = 美元 美元 美元 = 美元 美元 美元 = = 美元 美元 美元 = 美元

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员