Empirical regression discontinuity (RD) studies often use covariates to increase the precision of their estimates. In this paper, we propose a novel class of estimators that use such covariate information more efficiently than the linear adjustment estimators that are currently used widely in practice. Our approach can accommodate a possibly large number of either discrete or continuous covariates. It involves running a standard RD analysis with an appropriately modified outcome variable, which takes the form of the difference between the original outcome and a function of the covariates. We characterize the function that leads to the estimator with the smallest asymptotic variance, and show how it can be estimated via modern machine learning, nonparametric regression, or classical parametric methods. The resulting estimator is easy to implement, as tuning parameters can be chosen as in a conventional RD analysis. An extensive simulation study illustrates the performance of our approach.


翻译:经验回归不连续( RD) 研究经常使用共变法来提高估计值的精确度。 在本文中,我们建议使用比目前实践中广泛使用的线性调整估计值更高效的新型测算器类别,使用这种共变法信息的效率要高于目前实践中广泛使用的线性调整估计值。我们的方法可以容纳大量离散或连续的共变法。它涉及运行标准的RD分析,同时采用适当修改的结果变量,其形式为原始结果与共变法函数之间的差异。我们描述导致估算值的函数,其大小与最小的无特征差异相同,并表明如何通过现代机器学习、非对称回归法或典型的参数方法来估计。由此得出的估计值很容易执行,因为调整参数可以像常规RD分析那样选择。一个广泛的模拟研究展示了我们方法的绩效。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员