This paper studies the case of possibly high-dimensional covariates in the regression discontinuity design (RDD) analysis. In particular, we propose estimation and inference methods for the RDD models with covariate selection which perform stably regardless of the number of covariates. The proposed methods combine the local approach using kernel weights with `1-penalization to handle high-dimensional covariates, and the combination is new in the literature. We provide theoretical and numerical results which illustrate the usefulness of the proposed methods. Theoretically, we present risk and coverage properties for our point estimation and inference methods, respectively. Numerically, our simulation experiments and empirical example show the robust behaviors of the proposed methods to the number of covariates in terms of bias and variance for point estimation and coverage probability and interval length for inference.
翻译:本文研究了回归不连续状态设计分析中可能存在的高维共变情况,特别是,我们提出了对RDD模型的估计和推论方法,这些模型采用共变方法,无论共变体的数量多少,均以静态方式进行;拟议方法将使用内核重量的当地方法与`1-平衡处理高维共变体的当地方法结合起来,而这种组合在文献中是新的。我们提供了理论和数字结果,以说明拟议方法的有用性。我们从理论上讲,我们分别为我们点估计和推论方法介绍风险和覆盖特性。从数字上看,我们的模拟实验和经验实例显示了拟议方法在点估计和覆盖概率以及推论的间隔长度方面存在的偏差和差异的有力行为。