Server breaches are an unfortunate reality on today's Internet. In the context of deep neural network (DNN) models, they are particularly harmful, because a leaked model gives an attacker "white-box" access to generate adversarial examples, a threat model that has no practical robust defenses. For practitioners who have invested years and millions into proprietary DNNs, e.g. medical imaging, this seems like an inevitable disaster looming on the horizon. In this paper, we consider the problem of post-breach recovery for DNN models. We propose Neo, a new system that creates new versions of leaked models, alongside an inference time filter that detects and removes adversarial examples generated on previously leaked models. The classification surfaces of different model versions are slightly offset (by introducing hidden distributions), and Neo detects the overfitting of attacks to the leaked model used in its generation. We show that across a variety of tasks and attack methods, Neo is able to filter out attacks from leaked models with very high accuracy, and provides strong protection (7--10 recoveries) against attackers who repeatedly breach the server. Neo performs well against a variety of strong adaptive attacks, dropping slightly in # of breaches recoverable, and demonstrates potential as a complement to DNN defenses in the wild.


翻译:服务器的破坏是当今互联网上不幸的现实。 在深层神经网络(DNN)模型的背景下,它们特别有害, 因为泄漏模型提供了攻击者“ 白箱” 访问机会, 以生成对抗性实例, 这是一种没有实际强力防御的威胁模型。 对于已经投资多年和数百万名的专有DNN(如医学成像)的从业者来说, 这似乎是一场不可避免的灾难, 即将在地平线上出现。 在本文中, 我们考虑DNN模型的突破后恢复问题。 我们提议建立一个新系统, 创建一个新版本的泄漏模型, 以及一个测出和删除先前泄漏模型上产生的对抗性实例的推断时间过滤器。 不同模型的分类面稍稍有抵消( 引入隐蔽分布), 尼欧检测到攻击过度适应性模型的版本。 我们从各种各样的任务和攻击方法中, 尼奥能够非常精确地从泄漏的模型中过滤出攻击, 并提供强有力的保护( 7- 10 恢复) 攻击者反复破坏服务器的触发者 。 NEO 运行了各种强大的防御性攻击,, 以可恢复为强力的防御性攻击, 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
82+阅读 · 2022年7月16日
Arxiv
110+阅读 · 2020年2月5日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员