In many fields of science, comprehensive and realistic computational models are available nowadays. Often, the respective numerical calculations call for the use of powerful supercomputers, and therefore only a limited number of cases can be investigated explicitly. This prevents straightforward approaches to important tasks like uncertainty quantification and sensitivity analysis. This challenge can be overcome via our recently developed sensitivity-driven dimension adaptive sparse grid interpolation strategy. The method exploits, via adaptivity, the structure of the underlying model (such as lower intrinsic dimensionality and anisotropic coupling of the uncertain inputs) to enable efficient and accurate uncertainty quantification and sensitivity analysis at scale. We demonstrate the efficiency of our approach in the context of fusion research, in a realistic, computationally expensive scenario of turbulent transport in a magnetic confinement tokamak device with eight uncertain parameters, reducing the effort by at least two orders of magnitude. In addition, we show that our method intrinsically provides an accurate surrogate model that is nine orders of magnitude cheaper than the high-fidelity model.
翻译:在许多科学领域,现在可以找到全面而现实的计算模型。通常,各自的数字计算要求使用强大的超级计算机,因此只能对数量有限的案例进行明确调查。这妨碍了对不确定性量化和敏感性分析等重要任务采取直接的方法。这一挑战可以通过我们最近制定的敏感度驱动维度适应性分散的电网内插战略来克服。该方法通过适应性,利用基本模型的结构(例如低内在维度和不确定投入的反向交配),以便能够在规模上进行有效和准确的不确定性量化和敏感性分析。我们展示了我们的方法在聚变研究中的效率,在8个不确定参数的磁封闭托卡马克装置中计算成本高昂的暴动运输中,将努力至少减少两个数量级。此外,我们显示,我们的方法在本质上提供了精确的替代模型,其规模比高忠诚模型低9级。