Mixture models of Plackett-Luce (PL) -- one of the most fundamental ranking models -- are an active research area of both theoretical and practical significance. Most previously proposed parameter estimation algorithms instantiate the EM algorithm, often with random initialization. However, such an initialization scheme may not yield a good initial estimate and the algorithms require multiple restarts, incurring a large time complexity. As for the EM procedure, while the E-step can be performed efficiently, maximizing the log-likelihood in the M-step is difficult due to the combinatorial nature of the PL likelihood function (Gormley and Murphy 2008). Therefore, previous authors favor algorithms that maximize surrogate likelihood functions (Zhao et al. 2018, 2020). However, the final estimate may deviate from the true maximum likelihood estimate as a consequence. In this paper, we address these known limitations. We propose an initialization algorithm that can provide a provably accurate initial estimate and an EM algorithm that maximizes the true log-likelihood function efficiently. Experiments on both synthetic and real datasets show that our algorithm is competitive in terms of accuracy and speed to baseline algorithms, especially on datasets with a large number of items.


翻译:Plackett-Luce(PL)的混合模型(PL) -- -- 最基本的排序模型之一 -- -- 是一个具有理论和实际意义的积极研究领域。大多数先前提议的参数估算算法都倾向于快速实现EM算法,经常是随机初始化。然而,这种初始化方案可能不会产生良好的初始估计,而算法则需要多次重开,从而产生很大的时间复杂性。对于EM程序,电子步骤可以有效运行,但最大限度地实现M步骤的日志相似性由于PL概率函数的组合性质(Gormley和Murphy2008)而困难重重。因此,以往的作者偏爱尽可能扩大代理概率功能的参数估算法(Zhao等人,2020年)。然而,最终估算可能因此偏离了真实最大的可能性估算。在本文件中,我们探讨了这些已知的局限性。我们建议了一种初始化算法,它能够提供可被确认准确的初始估计值和EM算法,从而高效地最大限度地实现真实的日志相似性功能。在合成和真实的数据集上进行的实验表明,我们的算法在高数据的精确性和速度上都具有竞争力。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员