Graph neural networks (GNNs) have shown high potential for a variety of real-world, challenging applications, but one of the major obstacles in GNN research is the lack of large-scale flexible datasets. Most existing public datasets for GNNs are relatively small, which limits the ability of GNNs to generalize to unseen data. The few existing large-scale graph datasets provide very limited labeled data. This makes it difficult to determine if the GNN model's low accuracy for unseen data is inherently due to insufficient training data or if the model failed to generalize. Additionally, datasets used to train GNNs need to offer flexibility to enable a thorough study of the impact of various factors while training GNN models. In this work, we introduce the Illinois Graph Benchmark (IGB), a research dataset tool that the developers can use to train, scrutinize and systematically evaluate GNN models with high fidelity. IGB includes both homogeneous and heterogeneous graphs of enormous sizes, with more than 40% of their nodes labeled. Compared to the largest graph datasets publicly available, the IGB provides over 162X more labeled data for deep learning practitioners and developers to create and evaluate models with higher accuracy. The IGB dataset is designed to be flexible, enabling the study of various GNN architectures, embedding generation techniques, and analyzing system performance issues. IGB is open-sourced, supports DGL and PyG frameworks, and comes with releases of the raw text that we believe foster emerging language models and GNN research projects. An early public version of IGB is available at https://github.com/IllinoisGraphBenchmark/IGB-Datasets.


翻译:GNN研究的主要障碍之一是缺乏大规模灵活的数据集。目前GNN的公开数据集大多相对较小,这限制了GNNS对不可见数据的一般化能力。现有的大比例图形数据集提供了非常有限的标签数据。这使得很难确定GNN模型对不可见数据的准确性是否必然是由于原始培训数据不足或模型未能概括化。此外,用于培训GNNS的数据集需要提供灵活性,以便能够在培训GNN模式的同时对各种因素的影响进行彻底研究。在这项工作中,我们引入了GNNS的图表基准(IGB),这是一个研究数据集工具,开发者可以用来以高忠诚的方式对GNNS模型进行训练、检查和系统评估。IGB包括大尺寸的平级和混合的PNNDG图表,支持40 %以上的现有节点项目。比起最大的图表数据集,IMNNNNDD在公开的文本中,IGB数据库提供超过162x的精确性能,而G数据库则用于进行深度数据学习。IGB数据库的模型和GOI的高级数据库是多为G-G的精确度研究。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员