项目名称: 大气压直流微等离子体辅助液相合成和液相修饰纳米粒子研究

项目编号: No.11275127

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 钟晓霞

作者单位: 上海交通大学

项目金额: 85万元

中文摘要: 纳米粒子由于其表面效应、体积效应和量子尺寸效应,在生物医学、光电、能源、化工等领域具有重要应用。目前,纳米粒子合成和修饰主要在液相环境中进行。大气压非平衡低温等离子体具有无需真空、气体温度维持在室温、电子温度达到几个电子伏的特点,在辅助液相合成和液相修饰纳米粒子方面,具有潜在应用价值。本项目针对金、银纳米粒子、Au-DNA探针的合成和Si和SiC量子点的修饰,进行大气压直流微等离子体辅助液相化学反应研究。项目用发射光谱法诊断等离子体,用comsol软件和PIC-MC方法模拟等离子体,实验和理论研究放电参量对等离子体特性的影响;用紫外可见吸收光谱、光致荧光光谱检测反应溶液的光吸收、光致荧光特性;用FTIR、Raman光谱和TEM表征纳米粒子表面基团、纳米粒子尺度和结构;结合对等离子体非平衡特性和对液相非平衡化学反应动力学的分析研究,探索等离子密度和电子温度对液相合成和液相修饰纳米粒子的影响。

中文关键词: 常压微等离子体;液相化学反应;纳米颗粒;;

英文摘要: Nanoparticles have a wide variety of potential application in biomedical, optical and electronic field due to their high surface area to volume ratio, size-dependent properties. The synthesis and surface engineering of nanoparticles are mainly carried on in liquid. Atmospheric-pressure non-equilibrium plasma is characterized with vacuum free, high electron temperature (several eV), and low gas temperature (room temperature), has potential application in plasma assisted liquid phase chemical reaction. In this proposal, atmospheric-pressure DC microplasma has been introduced to liquid phase engineering of silicon(si) and silicon carbide (sic) quantum dot as well as liquid phase synthesis of gold, silver nanoparticles and Au-DNA probe in liquid. Optical Emission Spectroscopy will be used to diagnose the plasmas, the model employing COMSOL multiphysics finite element modelling software as well as PIC-MC based on XPDP1 and XOOPIC will be developed to simulate the atmospheric-pressure dc microplasma, plasma density and electron temperature of microplasma will be studied as a function of the inner diameter of the hollow cathode, the gas flow, the discharge power and the gas composition (argon, helium, gas mixture of argon and helium). Optical absorption properties and photoluminescence properties of nanoparticles will

英文关键词: atmospheric pressure microplasma;liquid phase chemical reaction;nanoparticles;;

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
153+阅读 · 2021年11月10日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
25+阅读 · 2021年4月2日
【ACMMM2020】条件推理的医学视觉问答
专知会员服务
38+阅读 · 2020年9月9日
【ACMMM2020】零样本语义分割的上下文感知特征生成
专知会员服务
15+阅读 · 2020年8月21日
恭祝各位新春快乐,虎年大吉!
CCF计算机安全专委会
0+阅读 · 2022年1月31日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月15日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
11+阅读 · 2019年4月15日
小贴士
相关主题
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
153+阅读 · 2021年11月10日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
25+阅读 · 2021年4月2日
【ACMMM2020】条件推理的医学视觉问答
专知会员服务
38+阅读 · 2020年9月9日
【ACMMM2020】零样本语义分割的上下文感知特征生成
专知会员服务
15+阅读 · 2020年8月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员