Mixtures of ranking models are standard tools for ranking problems. However, even the fundamental question of parameter identifiability is not fully understood: the identifiability of a mixture model with two Bradley-Terry-Luce (BTL) components has remained open. In this work, we show that popular mixtures of ranking models with two components (BTL, multinomial logistic models with slates of size 3, or Plackett-Luce) are generically identifiable, i.e., the ground-truth parameters can be identified except when they are from a pathological subset of measure zero. We provide a framework for verifying the number of solutions in a general family of polynomial systems using algebraic geometry, and apply it to these mixtures of ranking models to establish generic identifiability. The framework can be applied more broadly to other learning models and may be of independent interest.
翻译:排名模型的混合是排名问题的标准工具,但是,即使参数可识别性这一根本问题也没有被充分理解:含有两个布拉德利-泰里-卢斯(BTL)组成部分的混合模型的可识别性仍然开放。在这项工作中,我们表明,具有两个组成部分(BTL、具有3号大小的多名后勤模型或Plackett-Luse)的流行型模型混合是通用的可识别性,即,除了来自0号计量的病理学子集的参数外,地面真实性参数是可以识别的。我们提供了一个框架,用以核实使用代数几何几何测量法的多元系统总体组合中解决方案的数量,并将其应用于这些排序模型的混合中,以建立通用的可识别性。该框架可以更广泛地应用于其他学习模型,并且可能具有独立的兴趣。