Aligning model representations to humans has been found to improve robustness and generalization. However, such methods often focus on standard observational data. Synthetic data is proliferating and powering many advances in machine learning; yet, it is not always clear whether synthetic labels are perceptually aligned to humans -- rendering it likely model representations are not human aligned. We focus on the synthetic data used in mixup: a powerful regularizer shown to improve model robustness, generalization, and calibration. We design a comprehensive series of elicitation interfaces, which we release as HILL MixE Suite, and recruit 159 participants to provide perceptual judgments along with their uncertainties, over mixup examples. We find that human perceptions do not consistently align with the labels traditionally used for synthetic points, and begin to demonstrate the applicability of these findings to potentially increase the reliability of downstream models, particularly when incorporating human uncertainty. We release all elicited judgments in a new data hub we call H-Mix.


翻译:对人类的模型表达方式进行了调整,以提高稳健性和普遍性。然而,这些方法往往侧重于标准观测数据。合成数据正在扩散,并给机器学习方面的许多进步提供动力;然而,尚不总是清楚合成标签是否与人类感知一致 -- -- 使模型表达方式可能与人类不相协调。我们侧重于混合中使用的合成数据:显示一个强大的常规化器,以提高模型的稳健性、普遍性和校准性。我们设计了一系列全面的吸引界面,我们以HILL MixE 套件的形式发布,并征聘159名参与者,提供概念判断及其不确定性的判断,并超越混合范例。我们发现,人类的认知与传统上用于合成点的标签不一致,并开始表明这些结论的可适用性,以可能提高下游模型的可靠性,特别是在纳入人类不确定性时。我们都在一个新的数据枢纽中发布所有引出的判决,我们称之为H-Mix。</s>

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员