Obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess a sustainable access to water resources at urban scale. Mapping a nonstationary, sparse process such as precipitation at very high spatial resolution requires the interpolation of global datasets at the location where ground stations are available with statistical models able to capture complex non-Gaussian global space-time dependence structures. In this work, we propose a new approach based on capturing the spatial dependence of a latent Gaussian process via a locally deformed Stochastic Partial Differential Equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite volume approximation of the SPDE, coupled with Integrated Nested Laplace Approximation ensures feasible Bayesian inference for tens of millions of observations. The simulation studies showcase the improved predictability of the proposed approach against stationary and no-buffer alternatives. The proposed approach is then used to yield high resolution simulations of daily precipitation across the United States.
翻译:获取高分辨率降水量数据图可以为利益攸关方评估可持续获得城市规模水资源的情况提供关键见解。绘制非静止、稀少的进程,如高度空间分辨率的降水等,需要将地面站所在地的全球数据集与统计模型进行内插,以便能够捕捉复杂的非高加索全球空间-时间依赖结构。在这项工作中,我们提出一种新的方法,即通过当地破碎的托盘局部分辨法(SPDE)来捕捉潜伏高斯过程的空间依赖性,并有一个缓冲,允许在陆地和海洋之间建立不同的空间结构。SPDE的有限量近似加上综合Nested Laplace Approcent,确保了数千万次观测的可行贝叶色误判。模拟研究展示了拟议方法相对于固定和无缓冲替代方法的可预测性的提高。然后,将拟议方法用于对全美国每日降水量进行高分辨率模拟。