Motivated by applications in DNA-based storage and communication systems, we study deletion and insertion errors simultaneously in a burst. In particular, we study a type of error named $t$-deletion-$1$-insertion-burst ($(t,1)$-burst for short) proposed by Schoeny {\it et. al}, which deletes $t$ consecutive symbols and inserts an arbitrary symbol at the same coordinate. We provide a sphere-packing upper bound on the size of binary codes that can correct $(t,1)$-burst errors, showing that the redundancy of such codes is at least $\log n+t-1$. An explicit construction of a binary $(t,1)$-burst correcting code with redundancy $\log n+(t-2)\log\log n+O(1)$ is given. In particular, we construct a binary $(3,1)$-burst correcting code with redundancy at most $\log n+9$, which is optimal up to a constant.
翻译:根据DNA储存和通信系统中的应用,我们研究在爆破时同时删除和插入错误。特别是,我们研究Shoony 和 lt et al} 提出的一种名为$t-eletion-$$-安插-burst (t,1,1美元-burst)的错误类型,其中删除了连续的美元符号,并在同一个坐标处插入了一个任意的符号。我们根据二进制代码的大小提供了一个球包装的上限,可以更正$(t,1)$-burst错误,表明这些代码的冗余至少是$\log n+t-1美元。我们给出了一个明确的二进制(t,1)$-burst更正代码,其中含有冗余$\log n+(t-2)\log\log n+O(1)美元。特别是,我们用最多为$\log n+9美元(n+9美元)的冗余值来构建了一个双元(3,1美元)-burst校正代码,这是最理想的常态。