Optimal pricing, i.e., determining the price level that maximizes profit or revenue of a given product, is a vital task for the retail industry. To select such a quantity, one needs first to estimate the price elasticity from the product demand. Regression methods usually fail to recover such elasticities due to confounding effects and price endogeneity. Therefore, randomized experiments are typically required. However, elasticities can be highly heterogeneous depending on the location of stores, for example. As the randomization frequently occurs at the municipal level, standard difference-in-differences methods may also fail. Possible solutions are based on methodologies to measure the effects of treatments on a single (or just a few) treated unit(s) based on counterfactuals constructed from artificial controls. For example, for each city in the treatment group, a counterfactual may be constructed from the untreated locations. In this paper, we apply a novel high-dimensional statistical method to measure the effects of price changes on daily sales from a major retailer in Brazil. The proposed methodology combines principal components (factors) and sparse regressions, resulting in a method called Factor-Adjusted Regularized Method for Treatment evaluation (\texttt{FarmTreat}). The data consist of daily sales and prices of five different products over more than 400 municipalities. The products considered belong to the \emph{sweet and candies} category and experiments have been conducted over the years of 2016 and 2017. Our results confirm the hypothesis of a high degree of heterogeneity yielding very different pricing strategies over distinct municipalities.


翻译:最优化定价,即确定某一产品利润或收入最大化的价格水平,是零售业的一项重要任务。要选择这样一个数量,首先需要从产品需求中估算价格弹性。回归方法通常无法恢复这种弹性,因为影响混乱和价格内在性。因此,通常需要随机化实验。然而,弹性可能因商店所在地不同而有很大差异。由于市一级经常发生随机化,标准差异差异方法也可能失败。可能的解决办法基于一种方法,根据人为控制所构建的反事实,对单一(或少数)处理单位的处理效果进行估测。回归方法通常无法恢复这种弹性。例如,对于治疗组中的每个城市,都可以从未经处理的地点建立反常的实验。在本文中,我们采用了一种新型的高尺度统计方法,以衡量巴西主要零售商每日销售价格变化的影响。拟议的方法将一个单一(或仅几个)处理单位的处理方法作为衡量方法,根据人工控制所构建的反常态性结果衡量一个单一(或低位)单位的处理结果。在正常水平上,对常规销售产品进行了一种不同的分析方法。我们采用了一种新的高位统计统计方法,对巴西的处理方法,对一个不同程度进行了分级分析。在正常销售结果中,结果进行了不同的分析。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员