Beginning with Turing's seminal work in 1950, artificial intelligence proposes that consciousness can be simulated by a Turing machine. This implies a potential theory of everything where the universe is a simulation on a computer, which begs the question of whether we can prove we exist in a simulation. In this work, we construct a relative model of computation where a computable \textit{local} machine is simulated by a \textit{global}, classical Turing machine. We show that the problem of the local machine computing \textbf{simulation properties} of its global simulator is undecidable in the same sense as the Halting problem. Then, we show that computing the time, space, or error accumulated by the global simulator are simulation properties and therefore are undecidable. These simulation properties give rise to special relativistic effects in the relative model which we use to construct a relative Church-Turing-Deutsch thesis where a global, classical Turing machine computes quantum mechanics for a local machine with the same constant-time local computational complexity as experienced in our universe.
翻译:从图灵1950年的开创性工作开始,人工智能建议可以通过图灵机器模拟意识。这意味着对宇宙是计算机模拟的所有事物进行潜在理论,这要求我们能否在模拟中证明我们的存在。在这项工作中,我们构建了一个相对的计算模型,用古典图灵机器\textit{global}模拟一个可计算\ textit{local}机器。我们显示,本地机器计算 \ textb{simulation 属性的问题与其全球模拟器的模拟特性是无法从同样意义上判断的。然后,我们显示,计算全球模拟器所积累的时间、空间或错误是模拟特性,因此是无法判断的。这些模拟特性在相对模型中产生了特殊的相对相对相对性效应,我们用它来构建一个相对的教会-Turning-Deutschis 模型,用一个全球的、古典图灵机器为本地机器进行定量机械的计算,与我们宇宙中经历的同一时时局性本地计算复杂性。