Serology testing can identify past infection by quantifying the immune response of an infected individual providing important public health guidance. Individual immune responses are time-dependent, which is reflected in antibody measurements. Moreover, the probability of obtaining a particular measurement changes due to prevalence as the disease progresses. Taking into account these personal and population-level effects, we develop a mathematical model that suggests a natural adaptive scheme for estimating prevalence as a function of time. We then combine the estimated prevalence with optimal decision theory to develop a time-dependent probabilistic classification scheme that minimizes error. We validate this analysis by using a combination of real-world and synthetic SARS-CoV-2 data and discuss the type of longitudinal studies needed to execute this scheme in real-world settings.
翻译:提供重要的公共卫生指导的受感染个人的免疫反应数量化,可以确定过去感染的情况; 个人免疫反应取决于时间,这反映在抗体测量中; 此外,随着疾病的发展,由于流行程度而发生某种测量变化的可能性。 考虑到这些个人和人口的影响,我们开发了一个数学模型,提出一种自然适应性计划,用以根据时间来估计流行率。 然后,我们将估计流行率与最佳决策理论结合起来,以制定一种基于时间的概率分类计划,最大限度地减少错误。 我们利用现实世界和合成合成的SARS-COV-2数据,并讨论在现实世界环境中执行这一计划所需的纵向研究类型,从而验证这一分析。