Networks are common in physics, biology, computer science, and social science. Quantifying the relations (e.g., similarity) between networks paves the way for understanding the latent information shared across networks. However, fundamental metrics of relations, such as information divergence, mutual information, Fisher information, and causality, are not well-defined between networks. As a compromise, commonly used strategies (e.g., network embedding, matching, and kernel approaches) measure network relations in data-driven ways. These approaches are computation-oriented and inapplicable to analytic derivations in mathematics and physics. To resolve these issues, we present a theory to derive an optimal characterization of network topological properties. Our theory shows that a network can be fully represented by a Gaussian variable defined by the discrete Schr\"{o}dinger operator, which simultaneously satisfies network-topology-dependent smoothness and maximum entropy properties. Based on this characterization, we can analytically measure diverse relations between networks in terms of topology properties. As illustrations, we primarily show how to define encoding (e.g., information divergence and mutual information), decoding (e.g., Fisher information), and causality (e.g., transfer entropy and Granger causality) between networks. We validate our framework on representative networks (e.g., evolutionary random network models, protein-protein interaction network, and chemical compound networks), and demonstrate that a series of science and engineering challenges (e.g., network evolution, clustering, and classification) can be tackled from a new perspective. A computationally efficient implementation of our theory is released as an open-source toolbox.


翻译:物理、生物学、计算机科学和社会科学是常见的网络。 量化网络之间的关系(例如相似性)为理解网络间共享的潜在信息铺平了道路。 但是,网络间没有明确界定基本的关系衡量标准,例如信息差异、相互信息、渔业信息和因果关系等基本衡量标准。 作为一种妥协,通常使用的战略(例如网络嵌入、匹配和内核方法)以数据驱动的方式衡量网络关系。 这些方法面向计算,并且不适用于数学和物理学的分析性衍生。 为了解决这些问题,我们提出了一个理论,以得出网络地形属性的最佳特征。 但是,我们理论表明,网络可以完全由离散的Schr\"{o}规则操作者定义的高斯变量所代表。 作为妥协,通常使用的战略(例如网络嵌入、匹配和匹配)以数据驱动的方式衡量网络关系。 基于这一特征,我们可以分析测量网络在数学和物理特性方面的不同关系。 作为示例,我们主要展示了如何定义(e.g.restroaloral)网络的编码(例如, 信息流流化、 和相互的信息流流流化) 和正变化框架。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月26日
Arxiv
0+阅读 · 2022年9月26日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员