The picking of one or more objects from an unsorted pile continues to be non-trivial for robotic systems. This is especially so when the pile consists of a granular material (GM) containing individual items that tangle with one another, causing more to be picked out than desired. One of the key features of such tangle-prone GMs is the presence of protrusions extending out from the main body of items in the pile. This work characterises the role the latter play in causing mechanical entanglement and their impact on picking consistency. It reports experiments in which picking GMs with different protrusion lengths (PLs) results in up to 76% increase in picked mass variance, suggesting PL to be an informative feature in the design of picking strategies. Moreover, to counter this effect, it proposes a new spread-and-pick (SnP) approach that significantly reduces tangling, making picking more consistent. Compared to prior approaches that seek to pick from a tangle-free point in the pile, the proposed method results in a decrease in picking error (PE) of up to 51%, and shows good generalisation to previously unseen GMs.
翻译:从未分解的堆积中提取一个或多个物件对于机器人系统来说仍然是非三重的。 特别是当堆积由颗粒材料构成的颗粒材料(GM)组成, 含有相互缠绕的单个物品, 导致更多的人被挑选出来。 这种卷起式的转基因材料的主要特征之一是从堆积中的主要物品体体中延伸出一些孔径。 这项工作描述的是后者在造成机械缠绕和对收集一致性的影响方面所起的作用。 它报告说,在堆积中,以不同孔隙长度(PL)采集转基因的实验的结果是,被选取的质量差异增加76 %, 表明PL在选择战略的设计中是一个信息性特点。 此外,为了抵消这一效果,它提出了一种新的扩散和选取方法, 大大减小了熔融, 使采集方法更加一致。 与以前试图从堆积中勾结的无缠结点中提取的方法相比, 提议的方法的结果是, 取误差(PE) 高达51%, 并显示对先前的GM 进行良好的一般化。