We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local $H^1$ error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.
翻译:我们分析虚拟元件方法的本地准确性。 更准确地说, 我们证明一个与有限元件方法持有率相类似的错误, 也就是说, 内地子域的本地$H$1$的错误, 与内地子域内的本地解决方案平滑性所允许的最佳近似, 加上以负标准衡量的全球错误。