We develop an \textit{a posteriori} error analysis for a numerical estimate of the time at which a functional of the solution to a partial differential equation (PDE) first achieves a threshold value on a given time interval. This quantity of interest (QoI) differs from classical QoIs which are modeled as bounded linear (or nonlinear) functionals {of the solution}. Taylor's theorem and an adjoint-based \textit{a posteriori} analysis is used to derive computable and accurate error estimates in the case of semi-linear parabolic and hyperbolic PDEs. The accuracy of the error estimates is demonstrated through numerical solutions of the one-dimensional heat equation and linearized shallow water equations (SWE), representing parabolic and hyperbolic cases, respectively.
翻译:我们为部分差分方程(PDE)解决方案的功能首先在特定时间间隔内达到临界值的时间的数值估计,开发了一种误差分析。 利息的数量( QoI) 不同于古典的 QoI, 古典 QoI 模式是连接线性( 或非线性) 函数( 解决方案 ) 。 Taylor 的理论和基于联合的\ textit{ a posiori} 分析用于计算半线性抛物线和双线性 PDE 的可比较和准确的误差估计数。 错误估计的准确性通过单维热方程和线性浅水方程( SWE) 的数字解决方案分别代表单面和双向情况。