We introduce a novel family of expander-based error correcting codes. These codes can be sampled with randomness linear in the block-length, and achieve list-decoding capacity (among other local properties). Our expander-based codes can be made starting from any family of sufficiently low-bias codes, and as a consequence, we give the first construction of a family of algebraic codes that can be sampled with linear randomness and achieve list-decoding capacity. We achieve this by introducing the notion of a pseudorandom puncturing of a code, where we select $n$ indices of a base code $C\subset \mathbb{F}_q^m$ via an expander random walk on a graph on $[m]$. Concretely, whereas a random linear code (i.e. a truly random puncturing of the Hadamard code) requires $O(n^2)$ random bits to sample, we sample a pseudorandom linear code with $O(n)$ random bits. We show that pseudorandom puncturings satisfy several desirable properties exhibited by truly random puncturings. In particular, we extend a result of (Guruswami Mosheiff FOCS 2022) and show that a pseudorandom puncturing of a small-bias code satisfies the same local properties as a random linear code with high probability. As a further application of our techniques, we also show that pseudorandom puncturings of Reed Solomon codes are list-recoverable beyond the Johnson bound, extending a result of (Lund Potukuchi RANDOM 2020). We do this by instead analyzing properties of codes with large distance, and show that pseudorandom puncturings still work well in this regime.


翻译:伪随机线性码可以列表解码到容量 我们介绍了一种新颖的基于展开图的纠错码家族。这些代码可以使用线性随机性进行采样,并实现列表解码容量(在其他局部属性中)。我们的扩展器基于码可以从任何足够低偏差码系列开始制作,因此,我们给出了第一个可以使用线性随机性进行采样并实现列表解码容量的代数码系列的构造。我们通过引入伪随机码的概念来实现,其中通过[m]上的图上的展开随机游走选择[math] n [/math]基础码 $C\subset \mathbb{F}_q^m$ 的索引。具体而言,随机线性码(即真正的Hadamard码的随机删除)需要[math]O(n^2)[/ math]随机比特数量进行采样,而我们使用[math]O(n)[/ math]个随机比特对伪随机线性码进行采样。我们展示了伪随机删除满足真正的随机删除表现的若干理想属性。特别是,我们扩展了(Guruswami Mosheiff FOCS 2022)的一个结果,并显示小偏差代码的伪随机删除具有相同的局部属性,与高概率的随机线性代码相同。作为我们技术的进一步应用,我们还展示了Reed Solomon代码的伪随机删除超出了Johnson界限可以进行列表恢复,扩展了(Lund Potukuchi RANDOM 2020)的结果。我们通过分析具有大距离特性的代码属性来完成此操作,并展示伪随机删除在此范围内仍然有效。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员