The Lov\'asz Local Lemma (LLL) is a very powerful tool in combinatorics and probability theory to show the possibility of avoiding all bad events under some weakly dependent conditions. In a seminal paper, Ambainis, Kempe, and Sattath (JACM 2012) introduced a quantum version LLL (QLLL) which shows the possibility of avoiding all ``bad" Hamiltonians under some weakly dependent condition, and applied QLLL to the random k-QSAT problem. Sattath, Morampudi, Laumann, and Moessner (PNAS 2015) extended Ambainis, Kempe, and Sattath's result and showed that Shearer's bound is a sufficient condition for QLLL, and conjectured that Shearer's bound is indeed the tight condition for QLLL. In this paper, we affirm this conjecture. Precisely, we prove that Shearer's bound is tight for QLLL, i.e., the relative dimension of the smallest satisfying subspace is completely characterized by the independent set polynomial. Our result implies the tightness of Gily\'en and Sattath's algorithm (FOCS 2017), and also implies that the lattice gas partition function fully characterizes quantum satisfiability for almost all Hamiltonians with large enough qudits (Sattath, Morampudi, Laumann and Moessner, PNAS 2015). The commuting LLL (CLLL), which focuses on commuting local Hamiltonians, is also investigated here. We prove that the tight regions of CLLL and QLLL are different in general. This result indicates that it is possible to design an algorithm for CLLL which is still efficient beyond Shearer's bound.


翻译:暂无翻译

0
下载
关闭预览

相关内容

PNAS是《美国科学院院报》(Proceedings of the National Academy of Sciences of the United States of America, 缩写。它是美国国家科学院的院刊,亦是公认的世界四大名刊(Cell,Nature,Science,PNAS)之一,百年经典期刊。自1914年创刊至今,PNAS提供具有高水平的前沿研究报告、学术评论、学科回顾及前瞻、学术论文以及美国国家科学学会学术动态的报道和出版。PNAS收录的文献涵盖医学、化学、生物、物理、大气科学、生态学和社会科学,最新发布的影响因子为9.661(2016),特征因子(Eigenfactor) 为1.23581(2016) 。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月8日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员