Recently, several studies have proposed frameworks for Quantum Federated Learning (QFL). For instance, the Google TensorFlow Quantum (TFQ) and TensorFlow Federated (TFF) libraries have been deployed for realizing QFL. However, developers, in the main, are not as yet familiar with Quantum Computing (QC) libraries and frameworks. A Domain-Specific Modeling Language (DSML) that provides an abstraction layer over the underlying QC and Federated Learning (FL) libraries would be beneficial. This could enable practitioners to carry out software development and data science tasks efficiently while deploying the state of the art in Quantum Machine Learning (QML). In this position paper, we propose extending existing domain-specific Model-Driven Engineering (MDE) tools for Machine Learning (ML) enabled systems, such as MontiAnna, ML-Quadrat, and GreyCat, to support QFL.


翻译:最近,一些研究提出了量子联邦学习(QFL)框架。例如,谷歌的TensorFlow Quantum (TFQ)和TensorFlow Federated (TFF)库已被部署实现QFL。然而,开发人员大多尚未熟悉量子计算(QC)库和框架。提供一个对基础QC和联邦学习(FL)库提供抽象层次的面向领域的建模语言(DSML)将是有益的。这可以使实践者在部署量子机器学习(QML)的同时高效地执行软件开发和数据科学任务。在这篇立场论文中,我们建议扩展现有的面向机器学习(ML)启用系统的面向领域的建模驱动工具,如MontiAnna、ML-Quadrat和GreyCat,以支持QFL。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
联邦学习或将助力IoT走出“数据孤岛”?
中国计算机学会
20+阅读 · 2019年3月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
19+阅读 · 2022年10月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
43+阅读 · 2019年12月20日
VIP会员
相关论文
Arxiv
2+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
19+阅读 · 2022年10月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
43+阅读 · 2019年12月20日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员