In this paper we propose a lightning fast graph embedding method called graph encoder embedding. The proposed method has a linear computational complexity and the capacity to process billions of edges within minutes on standard PC -- an unattainable feat for any existing graph embedding method. The speedup is achieved without sacrificing embedding performance: the encoder embedding performs as good as, and can be viewed as a transformation of the more costly spectral embedding. The encoder embedding is applicable to either adjacency matrix or graph Laplacian, and is theoretically sound, i.e., under stochastic block model or random dot product graph, the graph encoder embedding asymptotically converges to the block probability or latent positions, and is approximately normally distributed. We showcase three important applications: vertex classification, vertex clustering, and graph bootstrap; and the embedding performance is evaluated via a comprehensive set of synthetic and real data. In every case, the graph encoder embedding exhibits unrivalled computational advantages while delivering excellent numerical performance.
翻译:在本文中,我们提出了一个称为图形编码器嵌入的闪电快速图形嵌入方法。拟议方法具有线性计算复杂性和在标准 PC 上在分钟内处理数十亿边缘的能力 -- -- 这是任何现有图形嵌入方法的一个无法实现的性能。加速实现时并不牺牲嵌入性能:编码器嵌入的功能与嵌入性能一样好,并且可以被视为更昂贵的光谱嵌入的转化。编码器嵌入适用于相邻矩阵或图形 Laplaceian,并且理论上是健全的,即根据随机点产品模型或随机点图,图形编码器嵌入的刻合器在块概率或潜伏位置上,并且通常分布在一般情况下。我们展示了三种重要的应用:脊椎分类、垂直组合和图形靴套;嵌入性性功能是通过综合合成和真实数据组合来评估的。在每种情况下,图形编码器嵌入的显示没有增值的计算优势,同时提供极好的数学性能。