We consider the problem of minimizing a differentiable function with locally Lipschitz continuous gradient on the real determinantal variety, and present a first-order algorithm designed to find stationary points of that problem. This algorithm applies steps of steepest descent with backtracking line search on the variety, as proposed by Schneider and Uschmajew (2015), but by taking the numerical rank into account to perform suitable rank reductions. We prove that this algorithm produces sequences of iterates the accumulation points of which are stationary, and therefore does not follow the so-called apocalypses described by Levin, Kileel, and Boumal (2021).
翻译:我们考虑将一个不同的功能与当地Lipschitz连续梯度在真实的决定因素多样性上最小化的问题,并推出一种旨在寻找这一问题固定点的第一阶算法。 这种算法应用了史奈德和乌施马杰沃(2015年)提出的最陡峭的下行步骤,对多样性进行回溯跟踪搜索,但将数字等级考虑在内以进行适当的降级。我们证明这种算法产生迭代点的序列,其积累点是固定的,因此没有遵循莱文、基勒尔和布马尔(2021年)所描述的所谓“末日化 ” ( 末日化 ) 。